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ABSTRACT  

 
The OpenFOAM computational fluid dynamics toolbox allows parallel computation of fluid 
dynamics simulations on a theoretically unlimited number of processor cores. The software 
utilises a message passing interface (MPI) library in order to facilitate communication between 
parallel processes as the computation is completed. In order to maximise the parallel 
efficiency of the computation, the way in which the MPI application distributes the problem 
among the processors needs to be optimised. This report examines the performance of a given 
high performance computing cluster with several OpenFOAM cases, running using a 
combination of MPI libraries and corresponding MPI flags. The effect of hardware variations 
on the speed of the computation is also briefly investigated. The results show a noticeable 
improvement in simulation time when certain flags are given to the MPI library in order to 
control the binding and distribution of processes amongst the cluster. 
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Simulations   

 
Executive Summary  

 
Computation Fluid Dynamics (CFD) is used to simulate fluid flow in order to solve 
engineering problems for a variety of applications. The Electromagnetic Signature 
Management and Acoustics group (EMSMA) has recently begun using the 
OpenFOAM CFD toolbox in order to study various flow problems. The software is run 
on a high performance computing (HPC) cluster built from a series of workstations 
containing Intel Xeon processors, networked together to run computations 
simultaneously. Due to the computationally intensive nature of CFD calculations, even 
a large cluster can take significant periods of time to produce a solution. As such, even 
small percentage improvements in the performance efficiency of the system can result 
in savings of days or weeks in the computational time required to produce solutions 
for the problem being investigated. 
 
In order to run a large problem across many different processors simultaneously, each 
case is divided into a number of smaller pieces each of which is handled by a single 
processor core. These pieces are distributed and assigned to each of the cores in the 
cluster by the software’s message passing interface (MPI) library, which also handles 
the communication required between processes in order to assure consistent results 
across the case domain. 
 
Multiple combinations of software utilisations are investigated in this report, including 
the comparison between Intel proprietary compilers and MPI library, with their open 
source equivalents. The various options provided in the MPI libraries for process 
distribution are investigated, as well as the effect of these options on different size and 
types of fluid dynamics problems. 
 
The results show that for the HPC cluster used by the EMSMA group, the best 
performance is achieved by using an open source compiler and MPI library and 
running jobs using the “bind-to-core” and “bysocket” MPI flags. It was also seen that 
the case decomposition method could be tailored to the specific case in order to 
provide additional performance and that the size of the case was particularly relevant 
to the maximum number of parallel processes that could be run before no further 
performance gains would be achieved from the addition of further hardware. 
 
This information will be used to ensure that all CFD simulations run on this hardware 
are optimised for maximum computational output and efficiency. 



UNCLASSIFIED 

UNCLASSIFIED 

Computational Fluid Dynamics (CFD) is used to simulate fluid flow in order to solve a 
range of engineering problems. The Electromagnetic Signature Management and 
Anechoics (EMSMA) group has been using the OpenFOAM CFD toolbox with a high 
performance computing (HPC) cluster in order to solve fluid dynamics problems for 
signature management applications. Theoretically, OpenFOAM can be run in parallel 
on an infinite number of computer processors; however, due to the nature of CFD 
calculations, various bottlenecks exist that limit the scalability of parallel computations. 
There are many factors that contribute to the computational performance of the system 
including the specifications of the hardware, as well as the configuration of the 
software. In order to solve a CFD problem using parallel computation, the domain of 
the problem is split into a number of sub-domains equal to the number of parallel 
processes to be run on the available hardware. In order to ensure consistent results 
across the full domain, communication between processes is facilitated and managed 
by the message passing interface (MPI) library. The configuration of the MPI protocol 
can have a significant impact on the overall performance. 
 
This report investigates a series of options available for optimising the configuration of 
the system including: different hardware specifications and capabilities; direct 
comparison between the Intel produced compiler and MPI library with an open source 
equivalent; comparison of different case decomposition methods available in 
OpenFOAM; as well as a comparison between many optimisation flags available in the 
MPI libraries for controlling the binding and distribution of parallel processes amongst 
the cluster. Similar benchmarking and optimisation investigations have been 
conducted for the SEA supercomputer, however the results of this work were not 
available for comparison at the time of writing. 
 
The results show that for the given hardware, the best computational speed is achieved 
by using the open source compiler and MPI library, and using MPI flags to specify 
binding processes to individual cores and distributing in the “by socket” fashion. It is 
also shown that the best decomposition method is highly dependent on the case being 
run and that the greatest efficiency is achieved when the number of parallel processes 
run is tailored according to the size of the case. It is expected that further parallelisation 
efficiency can be achieved through the addition of fast networking equipment (e.g. 
Infiniband) to the cluster. 
 
These outcomes will be used to ensure that the EMSMA HPC cluster is optimised 
correctly in order to maximise output efficiency for future simulations. The results may 
also be useful in optimising parallelisation of OpenFOAM on other HPC hardware.  
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CFD   Computational Fluid Dynamics 

CPU   Central processing unit 

EMSMA  Electromagnetic signature management and acoustics 

GCC  GNU compiler collection 

HPC   High performance computing 
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1. Introduction  

Computational Fluid Dynamics (CFD) is used to simulate fluid flow in many industrial 
applications. As the simulations become more complex, the computational power required 
increases significantly. In cases where computation time can be measured in days or 
months, even small efficiency increases can result in significant computational cost 
savings. 
 
The Electromagnetic Signature Management and Acoustics group (EMSMA) has recently 
begun using CFD simulations to study various flow problems. The main code used to 
perform the simulations is the open source CFD package OpenFOAM (version 2.2.2) [1]. 
This software is designed to run in parallel and can be configured to run on effectively any 
number of cores distributed across any number of networked machines. Ideally, software 
capable of running in parallel will divide a job into equal pieces and distribute them to as 
many processing units as are available. If each process is able to run independently, then 
the speedup gained will be linearly proportional to the increase in computational 
hardware. Due to the nature of CFD calculations, OpenFOAM requires a significant 
amount of inter-process communication to ensure consistent results across the case 
domain. This means that while the software is in theory infinitely parallelisable, every 
additional process increases communication overhead, which reduces the speedup below 
the linear optimum. Additionally, as the physical size of the hardware is increased, 
various system bottlenecks, such as network latency, can prevent the realisation of 
performance improvements from the addition of further hardware. 
 
Optimising the system to run efficiently is extremely important and in many cases a 
maximum number of parallel processes will be reached at which point no further 
performance gains can be achieved through parallelisation. Several factors in both the 
hardware and software of the system can influence the performance achieved while 
running simulations. In order to determine the effect of these factors on the efficiency of a 
CFD simulation, a small High Performance Computing (HPC) cluster was used as the test 
platform. By using a cluster, effects due to inter-machine communication, as well as 
intra-machine effects, can be examined. Several tests were run to determine the most 
efficient methods of running simulations on the hardware available. This report outlines 
the results of these tests and details the best system configuration for minimising the run 
time of a CFD simulation on the HPC cluster. While many of the results will be specific to 
the hardware used in this test platform, other optimisations are expected to be transferable 
to other HPC clusters running CFD software. Similar benchmarking and optimisation 
studies have been completed as part of the commissioning of the SEA supercomputer 
operated by the Hydrodynamics group. At time of writing, the results of this investigation 
were not available for comparison. 
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2. Methodology 

2.1 High Performance Cluster 

The HPC cluster used in this study consists of eight workstations (nodes) with Intel 
Central Processing Units (CPUs), connected by a 1 Gbps Ethernet network. Each node has 
the following configuration: 
 

Chassis: HP Z820 with factory liquid cooling 
CPU: 2x Intel XEON-E5 2687W – 8 cores per CPU @ 3.1GHz 
RAM: 8x 8GB DDR3-1600 Registered ECC memory 
Storage: 1TB SATA HDD plus network file system (NFS) server. 
OS: CentOS 6.5 
CFD Software: OpenFOAM 2.2.2 with OpenMPI 1.5.4 accessed via NFS 

 
The nodes are connected to each other via a local Ethernet switch, which is then connected 
via 1 Gbps local area network (LAN) to a separate workstation that acts as the network file 
system (NFS) server. The CFD software is located on the NFS server and loaded to RAM 
by each node at runtime. The configuration of the NFS server is as follows: 
 

Chassis: HP Z820 with factory liquid cooling 
CPU: 2x Intel XEON-E5 2687W – 8 cores per CPU @ 3.1GHz 
RAM: 16x 32GB DDR3-1333 Registered ECC memory 
Storage: 1TB SATA HDD plus 3x 3TB SATA HDD in RAID0 
OS: Red Hat Enterprise Linux 6.5 
CFD Software: OpenFOAM 2.2.2 with OpenMPI 1.5.4 

 
 
2.2 Hardware factors 

There are a variety of hardware factors that can affect the efficiency of a CFD calculation. 
This report will investigate those listed below. 
 
2.2.1 CPU/RAM speed 

Generally, the processing speed of the hardware is the main factor that determines the 
speed at which simulations will run. Since all workstations in the HPC cluster are 
currently fitted with the same CPU chips (Xeon E5-2687W), the effect of CPU speed is 
mostly irrelevant to this investigation. However, not all the workstations are fitted with 
the same speed RAM. For pre and post processing of large simulations, large amounts of 
RAM are often required. One workstation has been fitted with 32 GB RAM modules in 
order to maximise the available amount of memory for processing data. However, the 
larger 32 GB RAM modules are limited to a clock speed of 1333 MHz whereas the rest of 
the workstations in the cluster are fitted with 8 GB modules that run at 1600 MHz. Since 
OpenFOAM is a memory intensive application, it is expected that this variation should 
produce a notable difference in performance. 
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2.2.2 RAM Channels 

As well as the speed of the RAM, the number of memory channels between the CPU and 
the shared memory can also affect the speed of CFD simulations on the system. The Xeon 
E5-2687W CPUs each contain eight cores but only four memory channels. Whenever more 
than four cores are active on a single CPU, there will be some sharing of the memory 
channels. Since the memory channels have a limited capacity for transferring data, usually 
referred to as bandwidth, it is possible for the bandwidth on a given memory channel to 
become saturated. In this situation the cores must idle until the data has finished 
transferring from the memory. When every core in a node is being utilised, the node 
contains 16 active cores sharing only 8 memory channels. Assuming that one core is able to 
saturate the memory bandwidth of one memory channel when accessing data stored in 
RAM, it could be expected that the performance gains from running a job on eight cores 
per CPU would be minimal over running on four cores per CPU. If this is the case, due to 
the increased communication overhead of running extra parallel processes, a simulation 
running on eight cores per CPU (with four memory channels) might perform worse than 
the same job running on four cores on the same CPU. Tests running the same CFD 
simulation on different numbers of cores will be used to probe this effect. 
 
2.2.3 Turbo Boost 

Modern Intel CPUs, such as those used in the HPC, contain a turbo boost function that is 
designed to increase the clock speed of the CPU according to a series of parameters (CPU 
load, temperature, etc.) in order to increase performance. Since computational 
performance is directly related to CPU speed, increasing the clock speed should have a 
noticeable impact on the performance.  
 
Increasing the clock speed of a CPU above the specification (overclocking) is a procedure 
that has been utilised by enthusiasts for years in order to improve the performance of 
computer systems, generally for gaming applications [2]. However, overclocking can be 
difficult to perform successfully, can damage the CPU and voids the manufacturer’s 
warranty. Due to these factors, the inbuilt turbo capability of the Intel chips is a preferable 
option for maximising performance. Nominally, the Intel turbo function is designed to 
operate when only a few cores on a CPU are being utilised and the extra heat produced by 
running at higher speeds can be distributed across the cooling mechanism of the entire 
chip. In theory, when all of the cores on a chip are running simultaneously, turbo does not 
activate and so no increase in clock speed is observed. 
 
This raises an interesting point for investigation when considering the effect of limited 
memory channels as mentioned above. If the performance of four cores is similar to that of 
eight cores on a single CPU (due to memory channel saturation), the extra clock speed 
provided by the turbo function when only four cores are running could increase the 
performance over that of a simulation utilising all eight available cores. 
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2.2.4 Hyper-threading 

In a similar manner to the turbo boost function, modern Intel chips offer a capability called 
hyper-threading in an attempt to further maximise performance. Hyper-threading allows 
each core on the CPU to present itself to the operating system as two cores: one real and 
one virtual. The operating system can then assign jobs to the virtual cores and these jobs 
are run when the real core would otherwise be idle (such as during memory read/write) 
theoretically maximising the utilisation of the CPU. 
 
 
OpenFOAM is generally a memory intensive application, as opposed to strictly CPU 
intensive. In cases where the CPU is not fully utilised, hyper-threading allows processes 
assigned to virtual cores to run during the downtime and thus maximises utilisation. 
However, during CFD computations, CPU utilisation rarely drops below 100% and 
increasing the number of processes also increases the communication overhead. As a 
result, it is likely that this increased overhead will outweigh any benefit gained from 
maximising CPU utilisation through the use of virtual cores. 
 
2.3 Software Factors 

While changes to the specification and functionality of the hardware used to run CFD 
simulations will undoubtedly improve the performance, once hardware has been 
purchased it is often economically prohibitive to upgrade that hardware. To ensure that 
the current hardware is being utilised most efficiently, there are several optimisations that 
can be performed in the software, of which this report investigates the following. 
 
2.3.1 Process Binding and Distribution 

The method by which processes are allocated and bound to cores can have a significant 
impact on the overall speed of a parallel computation. The proximity of processes in the 
hardware architecture affects the speed and efficiency of inter-process communication. 
The basic topology of the EMSMA HPC cluster can be seen in Figure 1. 
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Figure 1 Hardware topology of the HPC cluster 

 
Note: Since the Z820 workstations contain only one motherboard in each chassis, there is 
no difference between a node and a board for the purpose of this investigation. As such, 
boards will not be mentioned further in this report. 
 
In most desktop computer systems, including those used for this investigation, process 
assignment is managed by the operating system so as to balance the load on the system. 
As part of this management, the operating system will move processes to different cores in 
an attempt to improve overall system performance. Typically, CFD applications assign 
discrete data to each parallel process that is stored in the memory attached to the core 
running that process. If the operating system moves a process to a core that is not directly 
attached to the same shared memory, the data relevant to that process needs to be 
rewritten in the memory before the job can continue. This is likely to have a detrimental 
effect on the performance of CFD simulations. 
 
The need to rewrite data in memory and the subsequent degradation in performance can 
be avoided by binding (or pinning) a process to a particular core. This prevents the 
operating system from reassigning a process before the job is finished. OpenMPI (the 
default message passing interface (MPI) library provided with OpenFOAM) provides 
several options for process binding and distribution control, each of which can be invoked 
when initiating the job using the ‘mpirun’ executable. 
 
The performance of jobs that rely on inter-process communication is also dependent on the 
distribution of processes across the cluster topology. Communication between cores on the 



UNCLASSIFIED 
DSTO-TR-2987 

UNCLASSIFIED 
6 

same CPU is faster than communication between sockets, which is faster than 
communication between nodes. 
 
A perfectly optimised parallel computation would distribute processes so as to maximise 
communication between cores on the same CPU and minimise communication between 
nodes. This level of fine grain optimisation is difficult (perhaps impossible) to achieve 
given the complexity of most large CFD cases and the limitations in the software. 
However, some control over the distribution can be attained and, as with process binding, 
can be easily specified when initiating the job. The flags that can be used for process 
binding and distribution are outlined in the mpirun man page [3] and are reproduced in 
Table 1. 
 
Table 1 Binding and Distribution options in OpenMPI 

  Flag Description 

Binding bind-to-none Do not bind processes. (Default)  

  bind-to-core Bind processes to cores. 

  bind-to-socket Bind processes to processor sockets. 

Distribution bycore Associate processes with successive cores if used with one of 
the -bind-to-* options. (Default) 

  bysocket Associate processes with successive processor sockets if used 
with one of the -bind-to-* options. 

  bynode Launch processes one per node, cycling by node in a round-
robin fashion. This spreads processes evenly among nodes and 
assigns ranks in a round-robin, "by node" manner. 

 
 
2.3.2 Case Size and Decomposition 

When a case is prepared for running in parallel, the domain is broken into pieces of 
roughly the same size, each of which is assigned to a core. As the number of processes 
increases, each piece becomes smaller and the computations can be completed faster. This 
is the basic principle of parallel computing. As mentioned earlier, increasing 
parallelisation in OpenFOAM also increases the amount of inter-process communication 
required in order to keep the results consistent. As a result, the number of parallel 
processes that can be run on any given case reaches a maximum where the reduction in 
computation time per process is completely offset by the increase in communication time 
and no further speedup can be achieved. For any given case of a specified mesh size, this 
point of maximum efficiency is important to find to ensure that computational resources 
are not being wasted. 
 
The method by which the domain is decomposed affects the size and shape of each piece 
and the order in which they are numbered, which in turn affects the relative locations 
within the domain (inter-processor distance). As a result, the decomposition method 
influences the time required for each process to complete its designated computations, the 
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amount of inter-process communication required and the topological distance between 
processes that need to communicate in the hardware architecture. OpenFOAM provides 
several built-in methods for decomposing cases to be run in parallel [4]. The description of 
each method is reproduced in Table 2.  
 
Table 2 Decomposition methods available in OpenFOAM 

Method Description 

Simple Simple geometric decomposition in which the domain is split into pieces by 
direction, e.g. two pieces in the x-direction, one in the y-direction etc. 

Hierarchical Hierarchical geometric decomposition which is the same as simple except the user 
specifies the order in which the directional split is done, e.g. first in the  y-direction, 
then the  x-direction etc. 

Scotch Scotch decomposition which requires no geometric input from the user and 
attempts to minimise the number of processor boundaries. The user can specify a 
weighting for the decomposition between processors, through an optional 
processorWeights keyword which can be useful on machines with differing 
performance between processors. 

Manual Manual decomposition, where the user directly specifies the allocation of each cell 
to a particular processor.  

 
Since the manual method requires specification of the binding for each cell, of which there 
are between several hundred thousand and several million for most cases, the manual 
method is not utilised at any point in this investigation. 
 
The workstations in the HPC cluster all contain identical hardware, hence the processor 
weighting function of the Scotch algorithm is also not utilised in this investigation. 
 
2.3.3 Proprietary vs Open Source Compilers/Libraries 

Given the open source nature of the OpenFOAM CFD package, the software is most often 
compiled using an open source compiler (e.g. GCC) and utilises an open source MPI 
library (e.g. OpenMPI) for process communication. These packages are readily available 
and freely distributed with the OpenFOAM software and most Linux based operating 
systems. 
 
Intel produce a proprietary compiler (ICC) and MPI library (IMPI) that purportedly 
provide performance increases due to optimisations specific to Intel based hardware. The 
HPC advisory council demonstrate performance increases using the Intel MPI library 
(compared to the Open MPI library) for clusters containing 8 nodes or more, with up to 
44% performance increase for a 16 node cluster as seen in Figure 2. 



UNCLASSIFIED 
DSTO-TR-2987 

UNCLASSIFIED 
8 

 
Figure 2 HPC advisory council advertised performance of Intel MPI vs OpenMPI [5] 

 

2.4 CFD Test Cases 

To investigate the effect on performance of each of the options outlined, many 
computations were performed using various combinations of the options to determine the 
optimum system configuration for running OpenFOAM on the given hardware. Two cases 
were tested to demonstrate any differences that may exist between the performance 
outcomes for different solvers. Different size meshes were used in each case to investigate 
the scalability of parallelisation for different size cases. Except in the case where the 
decomposition method was explicitly being investigated, the Scotch algorithm was used 
for parallelisation of all cases. The two cases used are: 
 

(i) Motorbike Tutorial 
The first case used for testing was a tutorial case provided with the OpenFOAM 
software that simulates the airflow around a 3D model of a motorbike and rider. 
This case uses the simpleFoam solver and is provided with a mesh of 
approximately 350,000 cells. (MB-350k) 
A higher resolution mesh of this case was created by doubling the background 
mesh density in 3 dimensions, which increased the total cell count of the completed 
mesh to approximately 1.8 million cells. (MB-1.8M) 

 
(ii) Proprietary DSTO case 

The second case used for testing was a case that has been the subject of a recent 
DSTO research project. This case uses the interFoam multiphase solver to simulate 
the interface between water and air in a moving system. Three meshes were used 
to run performance tests with sizes of 2.7 million, 5.8 million and 64 million cells. 
(DSTO-2.7M, DSTO-5.8M, DSTO-64M) 
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2.5 Simulation details 

Each computation was scripted to run using a variety of options in sequence. An example 
of the commands used to initiate jobs when comparing the effect of core binding is given 
here. For this test, a single node was used running 16 parallel processes. 
 

mpirun –np 16 –bind‐to‐core simpleFoam –parallel > log (with core binding) 
mpirun –np 16 simpleFoam –parallel > log    (without core binding) 

 
After each computation had completed a predetermined number of iterations (time steps), 
the log files were examined in order to determine the performance of each configuration. 
The overall computation time was extracted to give an indication of which configuration 
completed the job the fastest. The total number of time steps completed was then used to 
determine a performance rating (average time steps per hour). For the purpose of 
visualising results, the performance rating for each test was normalised against the 
performance rating for a single unit (either single core or single node depending on the 
test) and plotted as a parallelisation speedup factor. When visualised in this manner, the 
slope of the curve can be used to determine the parallelisation efficiency as a measure of 
speedup per unit increase in hardware. It is important to recognise that even when 
normalised, the performance rating (or speedup factor) is highly dependent on the 
complexity of the case, the solver and the cell count of the mesh and so cannot be used to 
accurately compare the results of different cases directly. It can, however, be used to 
compare the performance of different system configurations on the same case, which is the 
purpose of this investigation. 
 
To give a good visualisation of the level of speedup achieved through parallelisation, most 
tests were run multiple times using varying numbers of cores ranging from serial jobs run 
on a single core, up to highly parallelised jobs run on the maximum number of available 
cores. A manifest of computations completed can be found in Appendix A. 
 
 

3. Results and Discussion 

 
3.1 Process binding and distribution 

3.1.1 Binding 

It is expected that binding the processes will increase performance by preventing the 
operating system from moving processes as a part of load balancing operations. 
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Test Parameters 
Case(s) Motorbike 1.8 million cells 

Hardware 1 Node (1333 MHz RAM)  

Processes Up to 16 

MPI flags (no flags) 
-bind-to-core 
-bind-to-socket 

 
 
The results shown in Figure 3 demonstrate that, as expected, the overall fastest 
performance was achieved when the processes were bound and all cores were utilised. For 
greater than twelve parallel processes, running with no binding flags was slower and in 
some cases the simulation crashed. For less than twelve processes, binding the processes 
actually caused the simulation to run slower; this is a result of the process distribution as is 
explained further in section 3.1.2.  
 
In theory, the difference between binding jobs to a socket and binding to specific cores 
should be negligible, since the cores on each socket access the same shared memory. In 
practice, the results show that while the two binding options produce very similar 
performance outcomes, binding to a core was consistently a small margin faster than 
binding to a socket. It is possible that the operating system uses a small amount of CPU 
time monitoring the processes and potentially reassigning them within cores on the same 
socket. When all processes are bound to specific cores, this resource usage in process 
management would not need to take place. 
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Figure 3 Comparison of core binding performance on a single workstation 
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3.1.2 Distribution 

3.1.2.1 Single Node 
 
The results shown in Figure 3 were obtained by running jobs using only the binding flags. 
By default, Open MPI distributes jobs consecutively by core number. This means that 
when sixteen parallel processes are run, the first eight are assigned to the first eight 
numbered cores - which are all on the first socket - and then the last eight are assigned to 
the second socket. When only eight processes are run, this default distribution assigns all 
eight processes to the first socket, while the CPU in the second socket remains idle. 
The stepped curves in Figure 3 occur due to this process distribution in combination with 
the hardware architecture. While each Xeon CPU contains eight cores, they have only four 
memory channels that allow the cores to read and write from the shared memory. As a 
result, the expected parallelisation speedup is only fully realised up to four parallel 
processes per socket. Beyond that limit, each process is required to share memory 
bandwidth with at least one other process, which reduces the performance. 
 
The job run without binding does not experience this effect due to the reallocation of 
processes. After the first eight processes are assigned to the first socket, they are then 
reassigned by the operating system in order to balance the load and so are able to access 
the additional memory bandwidth on the second socket. As a result, running without 
binding is faster than running with binding for up to twelve processes, despite the 
slowdown attributed to process reallocation. 
 
By using the process distribution flags, it is possible to force the system to allocate the 
processes to each socket in turn such that for eight processes, four will be assigned to each 
socket and every available memory channel will be utilised. Figure 4 shows the same job 
run using the “bycore” (default) and “bysocket” distribution flags. Since this test was 
conducted using a single workstation, the “bynode” distribution flag would have 
produced the same result as the default option and was not tested. 
 

Test Parameters 
Case(s) Motorbike 1.8 million cells 

Hardware 1 Node (1333 MHz RAM)  

Processes Up to 16 

MPI flags -bind-to-core -bycore 
-bind-to-core -bysocket 
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Figure 4 Comparison of process distribution options on a single workstation. The default (no flags) 

result from Figure 3 is included for comparison. 

 
The results in Figure 4 show that: 

 As expected, increases in parallelisation need to be accompanied by available 
memory bandwidth in order to produce significant speedup. 

 Running sixteen parallel processes produces no realisable speedup over running 
eight evenly distributed processes on this hardware. 

 Running odd numbers of parallel processes is slower than running even 
numbers when using the “bysocket” distribution option. 

 
There is no immediately apparent reason why running with an odd number of processes 
would be slower than an even number. It is possible that the decomposition algorithm is 
not able to conveniently divide the domain into an odd number of pieces as easily as for an 
even number. Such differences could lead to increases in inter-process communication or 
unevenness in workload distribution that would cause a performance decrease, however 
this is beyond the scope of this investigation. The effect of case decomposition on 
performance is investigated in section 3.2. 
 
Theoretically, the only difference between the “bycore” and “bysocket” distribution 
methods when all sixteen cores are utilised is the amount of communication required 
between processes on different sockets. It could be expected that processes numbered 
closely would require greater communication since the decomposition algorithm would 
number parts of the domain in sequence. This would in theory result in the “bycore” 
option providing marginally faster results since neighbouring processes would generally 
be located on the same socket. In practice, the “bysocket” flag consistently produced 1-2% 
faster run times. Since the decomposed domain in all of the cases presented in this report 
is 3-dimensional, it is reasonable to assume that the number of neighbouring processes 
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that are also numbered closely does not represent a significant portion of the overall inter-
process communication.  
 
An interesting conclusion from the result in Figure 4 is that it is not better to utilise all of 
the cores available in a node than to use only half. However, this scenario only occurs 
when using 1333 MHz RAM. The majority of the workstations used in this investigation 
contain faster 1600 MHz RAM, which partly overcomes the memory bandwidth issue. 
Figure 5 shows the same test run on a machine with the faster RAM installed. While the 
memory bandwidth bottleneck is still present, as evidenced by the change in the slope of 
the data above eight processes, the results show that on these systems, the fastest 
outcomes are achieved by utilising all sixteen available cores. The direct comparison 
between RAM speed is discussed in section 3.5. 
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Figure 5 Comparison of process distribution options on a workstation with 1600 MHz RAM 

 
3.1.2.2 Cluster 
 
Once the level of parallelisation is expanded beyond the number of cores contained in a 
single workstation, processes are required to communicate across a network connection. 
This network connection can quickly become the most significant bottleneck in the system 
and, as such, distributing the processes so as to minimise the amount of network 
communication required can substantially impact the computational speed. The same test 
used to compare distribution options in a single workstation was used to make the same 
comparison in a larger networked cluster. 
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Test Parameters 
Case(s) Motorbike 1.8 million cells 

Hardware 8 Nodes (1600 MHz RAM) 
1 Gbps Ethernet Networking  

Processes Up to 16 per node 

MPI flags -bind-to-core –bycore  
-bind-to-core –bysocket 
-bind-to-core –bynode  
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Figure 6 Comparison of process distribution options across a 128 core/8 node cluster 

The results of this test, as seen in Figure 6, are ultimately the same as for a single 
workstation. Distributing “bycore” or “bysocket” gives very similar performance with the 
“bysocket” option providing slightly faster runtimes in most cases. The “bynode” option is 
clearly faster for low numbers of parallel processes since running 1 or 2 processes on each 
machine provides more memory bandwidth and faster CPU clock speeds (with turbo) 
than running on a single workstation. The “bynode” option very quickly reaches a point 
where network communication becomes the bottleneck in the system and adding further 
parallel processes provides no increase in performance. 
 
The scatter in the data at higher numbers of parallel processes are most likely due to a 
similar effect as that which caused the performance difference between odd and even 
numbers of processes in a single node (see section 3.1.2.1). Figure 6 clearly shows the best 
performance being achieved at 64 and 128 processes, with diminished levels of 
performance between. It is possible that at much higher levels of parallelisation, optimum 
performance is only achieved when the number of processes is some even multiple of the 
amount of hardware being utilised.  
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3.2 Case decomposition method 

The decomposition method used to parallelise the cases has a direct impact on the amount 
of inter-process communication that is required and the distance across the cluster 
topology that this communication has to travel. Several cases were parallelised using the 
following decomposition options: 
 

1) Simple decomposition split evenly in the x dimension. (Simple A) 
2) Simple decomposition split once in the y dimension and evenly in the x dimension. 

(Simple B) 
3) Hierarchical decomposition split once in the y dimension and evenly in the x 

dimension. Dimension hierarchy specified as x-y-z. (Hierarchical A) 
4) Hierarchical decomposition split once in the y dimension and evenly in the x 

dimension. Dimension hierarchy specified as z-y-x. (Hierarchical B) 
5) Scotch decomposition as determined optimum by the Scotch algorithm. 

 
The cases were decomposed both into 16 pieces for running on an individual workstation 
and into 128 pieces for running on the entire HPC cluster.  
 
Each decomposition method produced the same average cell count per piece for each case. 
However the average number of processor faces (boundaries that require inter-process 
communication) varied significantly, as can be seen in Table 3. 
 
Table 3 Average number of processor faces using various decomposition methods 

16 Pieces      
 MB-350k MB-1.8M DSTO-2.7M DSTO-5.8M  
Simple A 5147 13410 45050 47727  
Simple B 3990 10907 24269 29592  
Hierarchical A 4030 10949 24283 29641  
Hierarchical B 4000 11140 24333 29622  
Scotch 2969 10704 15675 37119  
      
128 Pieces      
 MB-350k MB-1.8M DSTO-2.7M DSTO-5.8M DSTO-64M 
Simple A 4149 12539 42201 49954 201814 
Simple B 2564 7123 23292 25846 104477 
Hierarchical A 2572 7134 23299 25857 104477 
Hierarchical B 2571 7185 23349 25889 104526 
Scotch 981 3234 4933 10505 48829 

 
For the Simple and Hierarchical methods, the cases were not split in the z dimension, as 
this would create a split at the multiphase interface in the DSTO case. Splitting across the 
multiphase interface is avoided so as to minimise the number of interface calculations that 
occur across the processor boundaries. 
 
The performance of each decomposition method was measured and normalised against 
the best result for each case. The normalised data is presented in Figure 7 and Figure 8. 
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Test Parameters 

Case(s) Motorbike 350 thousand cells 
Motorbike 1.8 million cells 
DSTO Case 2.7 million cells 
DSTO Case 5.8 million cells 
DSTO Case 64 million cells (128 cores only) 
 

Hardware 1 Node (1600 MHz RAM) 
or 
8 Nodes (1600 MHz RAM) 
1 Gbps Ethernet Networking  

Processes 16 per node 

MPI flags -bind-to-core –bysocket 
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Figure 7 Performance comparison of decomposition methods on a single workstation 
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Figure 8 Performance comparison of decomposition methods on 128 core cluster 

 
Since the Scotch decomposition method is optimised to reduce the number of processor 
faces, and thus reduce the amount of communication required, it could be expected that 
this would result in higher performance. With the exception of the 5.8 million cell case, the 
Scotch decomposition cases ran quickly, although not always significantly faster than the 
hierarchical method. 
 
The variability in performance in these results, particularly for high numbers of parallel 
processes, suggests that the optimum decomposition method is very dependent on the 
case and that there may be other factors related to the mesh topology and/or solver that 
influence the performance. This suggests that for any given case, a worthwhile amount of 
performance improvement can be gained by testing a few different decomposition 
methods to determine which provides the best layout for that particular case. 
 
3.3 Case Size Optimisation 

It is expected that for any given case, a point will be reached at which the performance 
gains obtained by increasing the level of parallelisation will plateau. In order to determine 
where this point lies for different sized cases with different solvers, each of the cases were 
run at different parallelisation levels on the HPC cluster. 
 
Figure 9 shows the performance of each case, run on 1-8 nodes of the cluster (16 – 128 
cores). Since the larger cases show much lower performance as a measure of time steps per 
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hour, each result has been normalised as a speed-up factor over the performance on a 
single node. 
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Figure 9 Speedup of each case when run on 1-8 nodes of the HPC cluster 

 
These results show a large amount of variation with extra nodes often decreasing the 
performance of the computation. This fluctuation is reminiscent of the result seen in Figure 
6, suggesting that optimum results are achieved through the parallelisation process when 
the number of processes is some even multiple of the hardware. If the data from Figure 9 is 
altered to only show results for numbers of nodes in powers of 2, the results show a trend 
much closer to the expected increase in performance. 
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Figure 10 Speedup of each case when run on 1, 2, 4 or 8 nodes of the HPC cluster as per Figure 9 

 
Figure 10 shows a clear performance improvement as the level of parallelisation is 
increased, with the larger cases scaling in performance up to large numbers of cores. The 
smaller cases show initial improvement, but then reach a point at which maximum 
parallelisation speedup has been achieved. Beyond this point, the performance can be seen 
to decrease with increasing parallelisation. This is a result of increased network 
communication requirements offsetting the gains achieved in computation speed by 
adding extra processing power.  
 
Table 4 shows the cell count per core for each case with the best performance highlighted. 
It is clear that the optimum cell count per core is highly dependent on the solver being 
used, with the optimum point being approximately 11,000 cells for the simpleFoam solver 
used in the motorbike tutorial cases, and approximately 43,000 cells for the interFoam 
solver used for the DSTO cases. This solver dependency is visible in the results shown in 
Figure 10. Since the optimum cell count per core is much lower for the motorbike case than 
for the DSTO case, the 1.8 million cell motorbike case scales well up to 8 nodes, while the 
2.7 million cell DSTO case reaches its maximum performance at 4 nodes. Due to the size 
limitations of the cluster, it is not possible to test whether these estimates of optimum cell 
count per core hold true for larger cases. 
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Table 4 Average cells per process for up to 128 processes. Best performance highlighted. 

Nodes MB-350k MB-1.8M DSTO-2.7M DSTO-5.8M DSTO-64M 
1 21792 116481 173137 482104 3945990 
2 10896 58241 86568 241052 1972995 
3 7264 38827 57712 160701 1315330 
4 5448 29120 43284 120526 986498 
5 4358 23296 34627 96421 789198 
6 3632 19414 28856 80351 657665 
7 3113 16640 24734 68872 563713 
8 2724 14560 21642 60263 493249 

 
Table 5 shows the parallelisation efficiency for each doubling of the cluster size for each 
case. The parallelisation efficiency is determined as the slope of the line between the data 
points in Figure 10. 
 
Table 5 Parallelisation efficiency with increases in cluster size from 1 node to 8 nodes 

   Parallelisation Efficiency    

Increase 
in Nodes 

Motorbike 
350k 

Motorbike 
1.8M 

DSTO 
2.7M 

DSTO 
5.8M 

DSTO 
64M 

1 ‐ 2  22%  85%  34%  81%  78% 

2 ‐ 4  ‐6%  51%  14%  34%  50% 

4 ‐ 8  ‐2%  14%  ‐5%  9%  26% 

 
While the larger cases are able to scale more efficiently than the smaller cases, all of the 
cases showed significant decreases in parallelisation efficiency as the number of nodes 
used was increased. This suggests that where possible, the smallest number of nodes 
should be used to run cases so as to maximise efficiency. This is practical when multiple 
cases are available to be run simultaneously and the cases are small enough that large 
parallelisation is required in order to complete the simulation in a reasonable timeframe. 
When only a single case is being run at a given time, the extent of the parallelisation 
should be tailored to the size of the case. For a large case, the fastest runtimes will 
generally be achieved by using the maximum available number of cores. 
 
 
3.4 Proprietary Compiler and MPI Library 

3.4.1 Intel MPI process binding and distribution 

The Intel MPI library provides a different set of optimisation flags to those used by Open 
MPI. In order to be sure that the process distribution is optimal, a test was run comparing 
the available optimisation flags, similar to the test performed for Open MPI. A total of 19 
different binding/distribution options were evaluated: 
 



UNCLASSIFIED 
DSTO-TR-2987 

UNCLASSIFIED 
21 

Test Parameters 
Case(s) Motorbike 1.8 million cells 

Hardware 1 Node (1600 MHz RAM) 

Processes 16 per node 
MPI flags 
 

Intel MPI: 
Default (no flags) 
-binding pin=0 
-binding pin=1 
-binding cell=unit 
-binding cell=core 
-binding “cell=unit map=spread” 
-binding “cell=unit map=scatter” 
-binding “cell=unit map=bunch” 
-binding “cell=core map=spread” 
-binding “cell=core map=scatter” 
-binding “cell=core map=bunch” 
-binding map=spread 
-binding map=scatter 
-binding map=bunch 
-binding domain=cell 
-binding domain=core 
-binding domain=socket 
-binding order=compact 
-binding order=linear 

 
 
The results in Figure 11 show that while there are many more distribution control options 
in the Intel MPI, with each providing different levels of performance as the parallelisation 
is increased, only the option that specifies to turn binding off (red line) causes significant 
reduction in performance when all cores are being utilised. For every other option, binding 
on is the default for the Intel MPI. The results also show that while some of the binding 
and distribution options for the Intel MPI library are sensitive to odd and even numbers of 
processes, others are less sensitive and some show a performance improvement with odd 
numbers rather than even. This suggests that the preference for even (or odd) numbers of 
processes is not a result of the case decomposition (which is identical for all of these 
options) but it is instead related to how the job distribution is handled by the MPI library. 
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Figure 11 Performance of 19 Intel MPI binding flags in a single workstation. (Legend omitted) 

The marked data points show the best result, achieved using the flag “cell=unit 
map=scatter”. 

 
On a single workstation the best performance was obtained with the “cell=unit 
map=scatter” binding flag, represented by the marked data points in Figure 11. however 
many of the options tested produced very similar performance as can be seen by the close 
proximity of many of the lines in Figure 11. To test the optimal binding flags to be used on 
the whole cluster, a subset of the best performing options from the single-node test was 
run on all the available test cases. 
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Test Parameters 
Case(s) Motorbike 350 thousand cells 

Motorbike 1.8 million cells 
DSTO Case 2.7 million cells 
DSTO Case 5.8 million cells 
DSTO Case 64 million cells 

Hardware 8 Nodes (1600 MHz RAM) 
1 Gbps Ethernet Networking 

Processes 16 per node 

MPI flags 
 

Intel MPI: 
-binding “cell=unit map=spread” 
-binding “cell=unit map=scatter” 
-binding “cell=unit map=bunch” 
-binding “cell=core map=spread” 
-binding “cell=core map=scatter” 
-binding “cell=core map=bunch” 
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Figure 12 Normalised performance of Intel MPI binding flags run on 128 cores for all cases 

Figure 12 shows that across the various test cases, there is no one binding flag that always 
produces the best performance. Across the results, each of the flags used in this test 
produced a performance measure within 2-4% of the best result for each case. It is then 
reasonable to expect that any of these flags could be used to achieve good performance. 
However, the results also show that across the cases, the “cell=unit map=bunch” option 



UNCLASSIFIED 
DSTO-TR-2987 

UNCLASSIFIED 
24 

produced the most consistent performance for all cases. As a result, the “cell=unit 
map=bunch” flag was used for all subsequent computations using the Intel MPI library.  
 
3.4.2 Intel vs Open Source Performance 

The Intel compiler and Intel MPI library can be used together, or in any combination, with 
the open source variations. As such there are four possible combinations of Intel/open 
source that can be used to run OpenFOAM. 
 
 Intel compiler and Intel MPI library (ICC-IMPI) 
 GCC compiler and Intel MPI library (GCC-IMPI) 
 Intel compiler and Open MPI library (ICC-OMPI) 
 GCC compiler and Open MPI library (GCC-OMPI) 

 
Each combination was used to run the same five cases as the case size optimisation test. 
The results in Figure 13 show the performance of the 1.8 million cell motorbike case. The 
results of all other cases were comparable. 
 

Test Parameters 
Case(s) Motorbike 350 thousand cells 

Motorbike 1.8 million cells 
DSTO Case 2.7 million cells 
DSTO Case 5.8 million cells 
DSTO Case 64 million cells (128 cores only) 
 

Hardware 8 Nodes (1600 MHz RAM) 
1 Gbps Ethernet Networking  

Processes 16 per node 

MPI flags Open MPI: 
-bind-to-core –bysocket 
Intel MPI: 
-binding “cell=unit;map=bunch” 
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Figure 13 Performance of Open Source vs Intel compiler and MPI Library. 

 
It is possible that the Intel compiler and MPI library may provide some advantages on 
different hardware or on larger scale clusters, however for the hardware currently being 
utilised for this study it is clear that maximum performance is achieved when using both 
the open source options (GCC-OMPI). 
 
3.5 RAM speed 

Figure 4 and Figure 5 show the results of the same simulation run on hardware configured 
with RAM at different clock speeds. It was shown that the memory channel bandwidth 
was a limiting factor in the speed of the simulation, and that faster memory is able to 
utilise this bandwidth more effectively to continue realising parallelisation gains once the 
number of processes on a socket exceeds the number of memory channels. Figure 14 
shows an overlay of the results directly comparing the simulation performance with RAM 
speed. It is clear that increasing the speed of the RAM provides significant speed 
improvement in the calculation, especially at higher levels of parallelisation. For 8 parallel 
processes, the 1600 MHz RAM allows 42% faster simulations than the 1333 MHz RAM, 
while at 16 parallel processes the difference is 67%. This extra 25% performance increase is 
enabled by the higher memory bandwidth of the faster RAM. 
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Test Parameters 
Case(s) Motorbike 1.8 million cells 

Hardware 1 Node (512 GB - 1333 MHz RAM)  
1 Node (64 GB - 1600 MHz RAM) 

Processes Up to 16 

MPI flags -bind-to-core -bysocket 
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Figure 14 Comparison of performance with RAM speed 

 
In the case where a job is being run on a single workstation, knowing that faster RAM 
produces faster simulations does not provide a significant advantage beyond being able to 
make informed purchasing decisions when procuring more hardware.  
 
For large scale parallelisation across multiple workstations this information is very 
important. CFD calculations are run as a series of iterations/time steps each of which must 
be fully completed before the next can begin. In large scale parallelisation, having one 
node running at a slower speed would result in the faster nodes completing their 
calculations and then having to wait for the slower node to finish before proceeding to the 
next calculation. This ultimately means that a large cluster will only run at the speed of its 
slowest component. It is important then, to be aware of any differences between individual 
pieces of hardware in the cluster and ensure that where possible, only like hardware is 
used to run large scale parallel computations. OpenFOAM provides load balancing tools 
that can be used to ensure that mixed hardware is fully utilised, but the use and 
effectiveness of these tools is beyond the scope of this investigation. 
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3.6 Turbo Boost 

Since the turbo function of the Xeon CPUs is nominally activated only when some of the 
cores on the CPU are idle, it is expected that the increased clock speed achieved by this 
function will only improve the simulation speed at low levels of parallelisation and so 
would not provide any advantage for the normal use case where all available cores are 
being utilised. Figure 15 shows the comparison between a job run with the turbo function 
enabled and disabled. Figure 16 shows the same results presented as the percentage 
improvement in performance with turbo enabled. 
 

Test Parameters 
Case(s) Motorbike 1.8 million cells 

Hardware 1 Node (1600 MHz RAM) 
- Turbo Enabled 
- Turbo Disabled 
 

Processes Up to 16 

MPI flags -bind-to-core -bysocket 
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Figure 15 Comparison of performance with and without Intel Turbo Boost functionality 
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Figure 16 Percentage performance increase from enabling the turbo function on a single node 

 
As expected, the greatest improvement from the turbo function was realised at low levels 
of parallelisation and so is not useful for practical purposes. However, the results showed 
that even at full utilisation, a small performance improvement (~2%) was seen when the 
function was enabled. Since there is no penalty for using the turbo boost, it is clearly best 
to always enable the capability, even when the expected improvements are small. 
 
3.7 Hyper-threading 

Unlike the turbo boost function, which can be utilised with no penalty, taking advantage 
of the hyper-threading capability of the Xeon CPUs requires increasing the level of 
parallelisation, which is known to increase overhead in CFD applications. Since the 
increase in parallelisation is not accompanied by an increase in memory bandwidth, it 
could reasonably be expected that little or no improvement would be achieved by 
assigning multiple processes to each physical core. 
 
When attempting to analyse the performance of a parallel simulation run with 16 
processes on one node, compared with 32 processes on the same node using 
hyper-threading, it was found that the system would not bind processes to a virtual core. 
If a case was run on greater than 16 cores with binding enabled it would fail to start. 
Figure 17 shows results of testing up to 32 processes, with hyper-threading enabled and 
binding disabled as well as the results up to 16 processes with binding enabled and 
hyper-threading both enabled and disabled. 
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Test Parameters 
Case(s) Motorbike 1.8 million cells 

Hardware 1 Node (1600 MHz RAM) 
- Hyper-threading enabled, binding enabled 
- Hyper-threading enabled, binding disabled 
- Hyper-threading disabled, binding enabled 

Processes Up to 16 with binding enabled 
Up to 32 with hyper-threading enabled, binding disabled 

MPI flags -bind-to-core –bysocket (binding enabled) 
-bysocket (binding disabled) 
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Figure 17 Comparison of standard parallelisation against 2x processes using hyper-threading 

 
While the increase in CPU utilisation provided by the hyper-threading function does seem 
to improve performance of the system, it is apparent that the best performance achieved 
from using all the additional virtual cores (with binding disabled), is less than that of using 
only the real cores with binding. The results for up to 16 processes with binding enabled 
were identical, regardless of whether hyper-threading was enabled or disabled. This is to 
be expected, since running on 16 or less cores means that the virtual cores provided by the 
hyper-threading function are not utilised. As a result, it is unimportant whether 
hyper-threading is enabled or disabled for the speed of the simulation. In the interest of 
system robustness, it is worth disabling the function as this prevents the user from 
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mistakenly attempting to bind processes to virtual cores which would result in the 
simulation failing to run. 
 
 

4. Conclusion 

 
For optimum use of the EMSMA group’s Intel Xeon based HPC cluster, the results of this 
investigation have shown that it is best to use a version of OpenFOAM that has been 
compiled with the open source compiler (GCC) and MPI library (Open MPI). Cases should 
be decomposed to run in parallel using either the hierarchical or Scotch decomposition 
methods depending on the case and level of parallelisation, then run using core binding 
and “by socket” process distribution on 16 processes per node and a maximum number of 
nodes dependent on the size of the case and the solver being utilised. Hardware 
containing the fastest available RAM should be used as a preference and clustering 
hardware with different performance levels should be avoided. Where possible, multiple 
cases should be run simultaneously using fewer nodes per case. 
 
 

5. Future Work 

The results comparing decomposition methods suggest that the optimum method varies 
on a case by case basis. Further investigation into which methods affect the performance in 
what way would provide a greater understanding of how the differences between the 
methods affects the performance and so which methods would likely be best to use in any 
given scenario. 
 
The greatest bottleneck encountered in attempting to increase the computation speed 
through parallelisation is the limitation in the speed of the networking equipment. 
Upgrading the network fabric to a faster technology (such as 10 Gbps Ethernet or 
Infiniband) would allow the realisation of much higher speed-up using the number of 
CPUs currently available, as well as allowing further upscaling of the size of the cluster. At 
the time of writing, Infiniband hardware was being procured to allow for fast networking. 
After installing this hardware, the case size optimisation done in this report will need to be 
repeated in order to determine the optimum cluster size for any particular case. It is also 
possible that faster networking hardware and/or a larger cluster size may allow the 
proprietary Intel compiler and MPI libraries to realise some speed up over the open source 
alternatives. 
 
In the case where upgrades to the cluster introduced a mismatch in hardware capability, it 
would be necessary to perform investigations into the load balancing tools available with 
the OpenFOAM package in order to ensure that large cases can be run on all the available 
hardware optimally. 
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Appendix A:  Table of completed simulations 

 

Hardware Compiler MPI 
decomposition 
method Cases Processes MPI flags 

1 node, 1333 MHz RAM GNU Open Scotch 
Motorbike 
350k 1-16 -bind-to-core 

1 node, 1600 MHz RAM       
Motorbike 
1.8M   (none) 

        DSTO 2.7M   -bind-to-core -bysocket 

            -bysocket 

              

1 node, 1333 MHz RAM (turbo disabled) GNU Open Scotch 
Motorbike 
350k 1-16 -bind-to-core 

1 node, 1600 MHz RAM (turbo disabled)       
Motorbike 
1.8M   -bind-to-core -bysocket 

              

1 node, 1333 MHz RAM (hyperthreading 
enabled) GNU Open Scotch 

Motorbike 
1.8M 1-32 -bind-to-core -bysocket 

1 node, 1600 MHz RAM (hyperthreading 
enabled)           -bind-to-core 

              

1 node, 1333 MHz RAM GNU Open Scotch 
Motorbike 
350k 1-16 -bind-to-core 

1 node, 1600 MHz RAM       
Motorbike 
1.8M   -bind-to-core -bysocket 

            -bind-to-socket 

            -bind-to-socket -bysocket 

            (none) 

              

1 node, 1333 MHz RAM GNU Open Scotch 
Motorbike 
350k 1-16 -bind-to-core -bysocket 

            -bind-to-core -npersocket 4 
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4 nodes, 1600 MHz RAM GNU Open Scotch 
Motorbike 
1.8M 1-32 -bind-to-core -bysocket -npersocket 4 

            -bind-to-core -bynode -npersocket 4 

              

              

8 nodes, 1600 MHz RAM GNU Open Scotch 
Motorbike 
1.8M 1-128 -bind-to-core -bycore 

        DSTO 2.7M   -bind-to-core -bysocket 

            -bind-to-core -bynode 

            -bind-to-core -bynode -bysocket 

              

8 nodes, 1600 MHz RAM GNU Open Scotch DSTO 64M 
8 per node, 1-8 
nodes -bind-to-core -bysocket 

              

8 nodes, 1600 MHz RAM GNU Open Scotch 
Motorbike 
350k 

16 per node, 1-8 
nodes -bind-to-core -bysocket 

        
Motorbike 
1.8M     

        DSTO 2.7M     

        DSTO 5.8M     

        DSTO 64M     

              

4 nodes, 1600 MHz RAM GNU Open Scotch DSTO 2.7M 1-64 -bind-to-core -bysocket 

              

4 nodes, 1600 MHz RAM GNU Open Scotch 
Motorbike 
1.8M 1-64 

-bind-to-core -bysocket  (hostfile specifies 1 core per 
node) 

            
-bind-to-core -bysocket  (hostfile specifies 8 cores per 
node) 

            
-bind-to-core -bysocket  (hostfile specifies 16 cores 
per node) 
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1 node, 1333 MHz RAM Intel Intel Scotch 
Motorbike 
350k 1-16 (none) 

1 node, 1600 MHz RAM       
Motorbike 
1.8M   -binding pin=0 

        DSTO 2.7M   -binding pin=1 

            -binding cell=unit 

            -binding cell=core 

            -binding "cell=unit;map=spread" 

            -binding "cell=unit;map=scatter" 

            -binding "cell=unit;map=bunch" 

            -binding "cell=core;map=spread" 

            -binding "cell=core;map=scatter" 

            -binding "cell=core;map=bunch" 

            -binding map=spread 

            -binding map=scatter 

            -binding map=bunch 

            -binding domain=cell 

            -binding domain=core 

            -binding domain=socket 

            -binding order=compact 

            -binding order=linear 
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4 nodes, 1600 MHz RAM Intel Intel Scotch DSTO 2.7M 1-64 -binding "cell=unit;map=spread" 

            -binding "cell=unit;map=scatter" 

            -binding "cell=unit;map=bunch" 

            -binding "cell=core;map=spread" 

            -binding "cell=core;map=scatter" 

            -binding "cell=core;map=bunch" 

            -binding domain=socket 

            -binding domain=cell 

            -binding domain=core 

            -binding order=compact 

            -binding order=scatter 

            -binding "domain=socket;order=scatter" 

            -binding "domain=cell;order=scatter" 

            -binding "cell=core;map=bunch;domain=core" 

            
-binding 
"cell=core;map=bunch;domain=core;order=compact" 

            
-binding 
"cell=core;map=bunch;domain=core;order=scatter" 

            -binding "cell=core;map=bunch;domain=node" 

            
-binding 
"cell=core;map=bunch;domain=node;order=compact" 

            
-binding 
"cell=core;map=bunch;domain=node;order=scatter" 

              

8 nodes, 1600 MHz RAM GNU Open Scotch 
Motorbike 
350k 

16 per node, 1-8 
nodes -bind-to-core -bysocket 

  Intel Intel   
Motorbike 
1.8M   -binding "cell=core;map=spread" 

        DSTO 2.7M   -binding "cell=core;map=scatter" 

        DSTO 5.8M   -binding "cell=core;map=bunch" 

        DSTO 64M   -binding "cell=unit;map=spread" 

            -binding "cell=unit;map=scatter" 

            -binding "cell=unit;map=bunch" 

              



UNCLASSIFIED 
DSTO-TR-2987 

UNCLASSIFIED 
37 

1 node, 1600 MHz RAM GNU Open Simple A 
Motorbike 
350k 16 -bind-to-core -bysocket 

8 nodes, 1600 MHz RAM     Simple B 
Motorbike 
1.8M 128   

      Hierarchical A DSTO 2.7M     

      Hierarchical B DSTO 5.8M     

      Scotch DSTO 64M     
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